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field 

L BBnyait and P Gartner!: 
f Physikalisches Institut, Universitat Bonn, West Germany 

Institute for Physics and Technology of Materials, Bucharest, Rumania 

Received 21 October 1983, in final form 15 December 1983 

Abstract. It is shown that, for hopping systems, even in the presence of a magnetic field, 
the Kubo approach for zero frequency gives the same DC conductivity tensor as the 
generalised stationary Miller-Abraham approach. In general, the result relies on certain 
assumptions of macroscopic homogeneity about the system, which for periodic lattices turn 
out to hold exactly. 

1. Introduction 

Although the generalisation of the hopping rate equation in the presence of a magnetic 
field dates back to Holstein (1961), its derivation, using either Green function tech- 
niques (Bottger and Bryksin 1977a, b) or the master equation approach (Aldea and 
BBnyai 1980), is fairly recent. 

The purpose of the present paper is to compare two ways of extracting the DC 
conductivity tensor of such a hopping model in the presence of a magnetic field. One 
alternative is to study, using the standard Kubo theory, the transitory regime in an 
isolated system in the limit of infinite volume and large times. In the second one, 
external sources are applied to boundaries in order to obtain a steady flow state. This 
way one gets a generalisation of the well known Miller-Abrahams scheme. The 
equivalence of the two approaches is by no means immediate. It seems that certain 
assumptions of macroscopic homogeneity enter essentially into the proof. In the 
absence of a magnetic field, for periodical lattices the proof is given by BAnyai and 
Gartner ( 1  980), using the translational invariance of the system: 

The presence of the magnetic field H brings in specific complications because 
essential surface effects must be taken into account. But for a system with a free surface 
the translational invariance is lost and one has to turn to other means of demonstration. 

Throughout the paper, several properties of the system are assumed to hold. They 
reflect, more or less transparently, the macroscopic homogeneity of the microscopically 
non-homogeneous system. Every assumption of this kind is proved to  hold rigorously 
for periodic lattices. 

Let us consider a finite domain R of the space to which a given array of sites, 
labelled by the index i, is confined. Each site is characterised by its position x, and 
energy ei. The R + 00 limit, which will be currently invoked below, implies that this 
set of sites is the restriction to R of an infinite one, extending in the whole space. In 
the presence of a constant, homogeneous magnetic field H and for small deviation of 
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1746 L Ba'nyai and  P Gartner 

the average site occupation numbers 3, from their equilibrium values f, = f( s i )  (f being 
the Fermi function) one gets the linearised form of the rate equations 

where 7, = i i, -f,, P = 1/ kT, e is the electron charge, j E 

(self-consistent) electric potential on the site j ,  and 
is short for x, E Cl, VI is the 

In the absence of the magnetic field, as is well known, the matrix Wff is symmetrical, 
independent of fl and related in a simple way to the phonon-induced hopping transition 
rates W,, (that are assumed rapidly decreasing with Ix, -x , l )  

w; I H = 0 = f, ( 1 - f, ) w,, = ws, = w; 3 0. 

It follows that MnlH,o is positive definite. 
A homogeneous magnetic field H (in the linear approximation with respect to this 

field) introduces an additional antisymmetric and %dependent piece Wff.^ in the 
matrix WF (Bottger and Bryksin 1977a, b, Aldea and Binyai 1980, Butcher and 
Kumar 1980) coming from the corresponding modifications of the transition rates. 
This antisymmetric part can be written as 

where 
Aijk = e [ ( x j - X k )  X ( X , - X k ) ] H % i j k .  

%,jk is positive, a-independent, rapidly decreasing with the distance between xi, xj ,  xk 
and totally symmetric with respect to the permutation of the indices i, j ,  k. That makes 
AIlk totally antisymmetric (due to the presence of the oriented area of the triangle x,, 
x,, xk in its definition). Wf]f.* is &dependent, but this dependence becomes weaker 
the further we are from the boundaries of n. The explicit form of Qijk in terms of 
the electron-phonon interaction may be found in the above-mentioned papers. 

2. The steady flow 

Let us start with some simple considerations concerning the macroscopic equations of 
the steady flow. If the system is infinite, homogeneous, with DC conductivity tensor 
U, one has 

j = - a V  V, V j =  I, (4) 
where V is the electric potential, j the current density and I the external current 
source needed to maintain the steady flow. Since our microscopic model lacks an 
unambiguous definition of the current density, we eliminate j from (4) to get 

VUV v = - I  ( 5 )  

or, in Fourier transform, 

kukQ = -1. 
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It is obvious that only the symmetric part of (T is involved, and the interesting 
H-dependent (Hall) effect is lost. Therefore, we are compelled to consider systems 
with free surface, where boundary conditions of the type 

I1 = -nil1 = n a p  V), ( 6 )  

appear. I1 is the external source concentrated on the surface Z of the domain R, n 
being the outward normal of Z. We mention also the relation (In1 =the  volume of 
the domain R) 

which is based on (4) for the bulk term and (6) for the surface term. For the particular 
case of the steady flow in a constant electric field E, j is also constant whence I = 0 and one 
is left with 

1RI-l XI1 ds  = - j .  (7) 
I: 

Turning now back to the microscopic problem, it is clear that in order to have a 
solution of the problem corresponding to  a stationary flow one has to modify the rate 
equation (1) by an external source term (Binyai and Aldea 1979). The steady state 
is then given by 

where U, = V j / e p h (  1 -f,) + V, is the local electrochemical potential. Equation (8) 
looks formally like the original Miller-Abraham equation, but its interpretation as a 
resistance network is no longer valid for H # 0 since W: is no longer symmetric. For 
the infinite, periodic system equation (8) is readily solved by discrete Fourier transforms 
(BQnyai and Gartner 1980). For systems with free surfaces the idea is to  guess a 
particular solution for U which gives through (8) a set of external sources coupled 
only in a narrow strip at the boundaries, and is zero in the bulk. This is done as follows. 

Since the infinite macroscopic system, described by (5) with the sources at infinity, 
has the constant field solution V = -xE it is assumed that its microscopic counterpart 
(8) with sources at infinity 

0 = c M,,U, 
J 

(9) 

admits the solution 

U, = - ( xj + CY,) E = -y,E. (10) 
The exact homogeneous field (linear potential) solution is not expected to hold 

down to the microscopic scale, and CY;. takes into account the local departures, but it 
is assumed that cu,/1xjl becomes negligible for large lxjl, to ensure the correct (linear) 
asymptotic behaviour. 

This assumption will be proved to hold for periodic lattices with a periodic and 
therefore also bounded function of site. (The absence of superscript R in (9) means 
R =infinity.) 

Introducing the solution (10) in (8) for the finite volume, 
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it is clear that the non-vanishing external sources I ,  are  needed near the surface to  
compensate for the flow between R and the rest of the infinite system in (9). This 
compensation decreases rapidly with the distance from the boundary of R. (This is 
the microscopic counterpart of the macroscopic constant field case, where only I= is 
present.) 

The  identification between the macroscopical and microscopical entities is done by 
(see (7)) 

whence the DC conductivity tensor is 

Here IRI is the number of sites in the domain 0. 
Since the sum over j is non-zero only for i in the neighbourhood of the surface, 

replacing x? by y? gives rise to  a difference which tends to  zero as n tends to infinity 
(e.g. if af" is bounded it decays as the surface divided by the volume): 

or,  using the definition of M n  (equations (2) and (3)) and after some simple algebraic 
manipulations: 

The  first term of (12) is obviously the symmetric part of U while the second is its 
antisymmetric part. The  last one  can be written, using the totally antisymmetric tensor 

as 

U;" = c &w"php 
P 

with 

The sign of the Hall effect is given by the sign of 
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3. The Kubo approach 

It is known that the Kubo-type approach to the hopping conduction problem, which 
uses (1) (Brenig et a1 1971, Butcher 1972), gives rise to the following expression for 
the conductivity tensor 

( z  tends to zero along the imaginary axis of the complex plane z = iw and limz+o is 
in fact the zero-frequency limit). 

The only new ingredient is again the magnetic field dependent part of TR (see also 
Aldea and Bdnyai 1980). 

Defining the matrix p by 

Pi] = Sijf,(l-h) = 6i,pi, P i > ( ) ,  

and noting (see ( 2 ) )  that T R p  = MO, one gets 

Our purpose is to show the equivalence of (14) with the Miller-Abrahams result 

(i) Firstly, we shall prove that the second term in (14) can be rewritten as 
( l l ) ,  and to  this end we proceed in two steps. 

(where again the R = 00 quantities are written without superscript). 

amounts to the existence of a distance d such that 
For the sake of simplicity we shall consider here only the finite-range case. This 

w;. = 0 for [x i  - xlI > d, 

Ailk = 0 formax{lxi-xJl, l x l - x k l ,  / x , -xk l }>  d .  (15) 
The more general case of rapidly decreasing W ;  and A, can be treated essentially 

by using the same argument. 
The frame of the subsequent discussion is the space I ,  of bounded sequences defined 

on our infinite array of sites, with the usual norm of the uniform convergence (Kato 
1966). 

An infinite matrix T defines a bounded operator, as usual, by 

if and only if (Kato 1966) 

This is true for our operator M, provided 

and lAilkl < c2 (17) 
I .  k 

c w;<c1 
] ( # I )  

with Cl, C2 i-independent constants. These conditions ensure the boundedness of 
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21(+11 WIT The operator M n  can be regarded as acting in I ,  too, with Mf:  = 0 if either 
i E R or j E  0. It is obviously bounded, since it is finite dimensional, but what is more 
important, using (17) again, one readily finds a constant C so that 

lIMnll < c for every 0. 

In other words, the set of operators { M R } n  is uniformly bounded. 

they involve only coordinate differences, e.g. 
The sequence x’” = {xf } ,  is not bounded, but { (Mnx”) l } l  and {(Mx’”),}, are, because 

( M X ” ) ,  wl1(~f-x:), 
I 

for points with IxI - x l l <  d. As before, for { (Mnx”) ,} ,  a uniform bound is available. 

are bounded for Re z 3 0, z f 0, as seen in the following representation: 
Let us now turn to the more difficult operators ( z p  + Mn)-l and ( z p  + M)-’. Both 

where A is the diagonal part of M ,  

Ail = Si1 C wik = 6ijAi, 
k 

and W = A- M has the transition rates Wi, as matrix elements. The expansion (18) 
is convergent because (see (16)) 

Strictly speaking the !ast inequality holds only if p i  cannot approach zero, which 
amounts to the boundedness of the set of site energies { E ~ } ~ .  The same kind of argument 
proves that ( zp  + is uniformly bounded. 

With these prerequisites let us turn to our problem and show that, indeed, 

tends to zero as IRI + m. The following observations are in order. The quantity 

appearing in both terms of (19) is zero for j E R  and uniformly bounded otherwise. 
On the other hand both 

are strictly vanishing for j not belonging to the strip X of width d along the surface 
of R. Indeed, equations (15) show that the difference between M: and Mjl becomes 
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strictly zero for either j or 1 sufficiently far from the surface of R. Therefore both 
terms in the RHS of (19) involve summations restricted to the strip 2 over uniformly 
bounded quantities, and tend to zero as IZl/(sZl. 

(ii) It is not obviously clear whether the z + 0 limit in the Kubo type formula exists. 
The difficulty comes from the fact that M is not invertible and 

(2- z p + M  Mx’) I 

may have no meaning as z+O.  Nevertheless, M is present in the numerator too, so 
one hopes that the singularity is cancelled out. 

Therefore, the second step relies on the assumption (which will be rigorously proved 
for periodic lattices) that 

h Y = lim ( Mx ’ ) 
2-0 z p + M  1 

exists, and moreover, it can be performed in the expression of (+ before the infinite- 
volume limit. This inversion of the order of limits is true for instance if the convergence 
in (20) is uniform with respect to i ( I ,  convergence). 

We show next that, under these conditions, the assumption contained in (10) 
becomes true with ai = -Ai. To this end consider 

Mx = ( M x ) ~ .  = (Mx),-lim zp, - 
2-0 ( z p + M  

1 

Therefore y i = x i - A i  satisfies ( M y ) ,  = O  for every i. Since {Ai}i is obtained as an 
I ,  limit, it is bounded. This shows that y ,  has the required asymptotic behaviour, 
which completes the proof of our statement. 

Collecting now the results, one may cast of (14) into the form 

which is exactly ( l l ) ,  as desired. 

4. Periodic lattices 

We consider a periodic lattice, whose Bravais lattice vectors are denoted by r, and 
having N sites per cell. The positions inside the cell are given by the set of vectors 
{&},sssN. This way the site index i is replaced by the set ( r ,  s) and 

xs(r) = r+&,  

E s ( r )  = E,, 

s = 1 , 2  , . . . ,  N. 

The translational invariance of the problem implies 
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~ 3 , ( r ,  r')  = W:s,(r- r ' ,  0 )  = Wfsf(r- r ' ) ,  

AsSrs-(r, r ' ,  r") = 

Mss8(r,  r ' )  = M S S s ( r - r ' ) .  

r - r", r' - r"),  

As immediate consequences we have the periodicity and thus the boundedness of the 
quantities in (17) and of pS(r) = ps 

We turn now to the proof of (20) (which contains also the proof of (10)). Because 
of the translation invariance of the problem it is useful to use discrete Fourier transforms 

A(k) =C M ( r )  eikr 
r 

where k runs through the Brillouin zone of the lattice. In this representation & ( k )  
are N X N diagonal blocks of M so that the whole problem becomes N-dimensional. 
The zero eigenvalue of M belongs to fi(O), and is non-degenerate with the eigenvector 
denoted by 11) having all its N components equal to 1.  It is easy to see that 

Mx=iii(O))5)+i(v&fi)(o)ll> 
where 16) has the components (&I,. 

The quantity of interest becomes 

The z + 0 limit of (21) is analysed using the perturbation theory with respect to z. 
Using the notations m,, P, (a = 1 , 2 , .  . . , N )  for the eigenvalues and eigenprojectors 
of C(0) and knowing that 

m ,  = 0 ,  Pl = l1)(1l/(1ll), 
the only singular term in the z + 0 limit can arise from the perturbation of m, and is 

Since the first term is obviously zero, the essence of the proof is to show that 

Mss, (r )r  = 0. i ( l l (VkA)(0)[ l )  = - 
s,s' 

For the symmetric part of M it is obviously true using inversion symmetry arguments 
(M; , , ( r )  = MSIS(-r ) ) .  For the antisymmetric part one has to show that 

C rAssfs,,(r, 0 ,  r ' )  = C ra(r,  0,  r ' )  = 0 
ss"" r,r' 
rr' 

where 
u(r ,  r', r") = C ASs8,..(r, r', r"),  

ss"" 

Since a(  r, r ' ,  r") is a completely antisymmetric, translation invariant quantity, one has 
successively 

C r a ( r , O , r ' ) = C  r u ( r - r ' , - r ' , ~ ) =  -C r a ( r - r ' , ~ , - - r ' )  
r,r' r.r' r,r' 

= - 1 ( r - r ' ) u ( r ,  0 ,  r')  = -2 1 ra(r,  0 ,  r ' )  
1.1' r.r' 
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which shows that (22) is true. Therefore the z + 0 limit exists and the calculations give 

and A is a constant. In fact A is irrelevant since it represents a constant shift of the 
potential in (10). Up to this term we obtain 

y s ( r )  = r -C  (Gi(Vkfi)(0Nss, 
S' 

independent of the actual positions of the sites in the cell. For periodic lattices the 
infinite-volume limit for the conductivity (12) is readily performed and gives 

+ 3  1 AssSs4r, r ' ,  O) (yY(r )  - y$(o ) ) ( y ," . ( r ' )  - y i t , ( O ) ) ) .  
ss"" 
rr'  

For simple Bravais lattices G is equal to zero, so that 

y( r )  = x( r )  = r. 

In this case the sign of the Hall effect is electronic, because (13) becomes 

~h = e'pi 2 %(r,  r' ,  O) [ ( r  x r ' ) ~ ] ~ .  
r,r' 

Unfortunately, in general (13) does not allow a simple prediction for the sign of 
the Hall effect. Indeed, the triangles (xi, x,, x k )  and (yi, y,, y k )  have, in general, non- 
parallel normals, and one can easily find cases in which H has opposite sign projections 
on them. This allows for arbitrary sign in some of the terms of (13), according to the 
direction of H. 

Another interesting peculiarity of simple lattices is the fact that it shows very clearly 
the importance of the surfaces in the Hall effect. Because in simple lattices the problem 
is always inversion invariant, we have 

A(r,  r', r") =A(-r ,  -r ' ,  -r").  
Therefore we have 

A(r,  0,  r' )  = A(-r,  0 ,  - r ' )  = -A(O, -r, -r')  = -A(r ,  0 ,  r -  r')  
and in the expression of 

W^( r )  = A( r, 0 ,  r' )  
r' 

the terms with r;  and r; = r -  ri cancel out pairwise so that W ^ ( r )  is identically zero. 
Therefore any information about the magnetic field is lost on the infinite system. On 
the other hand, for a finite system, and close to the surface, the cancellation does not 
take place if one of the terms involves points outside the domain R. 
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5. Concluding remarks 

Although in the Kubo version the conductivity seems to depend on the matrices r, p 
and the site locations x,, while the stationary flow problem is formulated only in terms 
of the matrix M, it was shown that the two approaches are equivalent in the case of 
periodic lattices. Many steps of the proof do not depend essentially on the periodicity 
and were given directly for more general systems. Other steps had to be replaced by 
certain assumptions. 

It is obvious that some hypotheses are needed in order to ensure that the system 
is macroscopically homogeneous. It is felt that the assumptions we made are of this 
character. 

The formula one gets for the conductivity (12) is easily and transparently obtained 
in the Miller-Abraham framework, while in the Kubo-type approach a more compli- 
cated argument is needed. 

As emerged from the analysis, the magnetic field dependent part of (+ is highly 
sensitive to the handling of the surface contribution. 

Taking from the very beginning the infinite system leads to incorrect results as 
shown in § 4. 

In what concerns the sign of the Hall effect one cannot predict a unique answer. 
For Bravais lattices it is electronic, but other cases cannot be ruled out. 

Our result (12) was first obtained by Butcher and Kumar (1980). As far as the 
Hall effect was concerned they essentially used the w + 0 limit of the Kubo formula, 
linearised with respect to H (which amounts to taking for our set {y,li in (13) only 
its H = O  value). For the identification of the symmetric part of the DC conductivity 
tensor the w + 0 limit for the Joule heating of the Miller-Abraham resistor network 
was computed. The homogeneity was achieved by a configurational average of the 
disordered system, and the w + 0 limit of the relevant quantities was assumed to exist. 

We showed here that both the Kubo and the Miller-Abrahams approach give the 
same result for both the symmetric and the antisymmetric part of (+ DC, and tried to 
restrict to a minimum of explicit assumptions, for the rigorous proof of the results. 
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